Производство сложных полиэфиров методом поликонденсации. Технология производства сложных полиэфиров

Своими руками 22.09.2020
Своими руками

ПК : 1 – в расплаве; 2 – в растворе; 3 – в эмульсии; 4 – в суспензии; 5 – межфазная.

Методы 2 – 4 уже рассмотрены при изучении реакции полимеризации. Поэтому остановимся на 2-х оставшихся.

ПК в расплаве. Если исходные вещества и полимер устойчивы при температуре плавления, то реакцию проводят в расплаве в среде инертного газа при пониженном давлении, а заканчивают в вакууме (для отвода побочных продуктов).

Межфазная ПК. Эта реакция проводится между 2-мя несмешивающимися растворами мономеров или (реже) мономерами в состоянии жидкости и газа. Полимер при этом образуется на границе раздела сред (откуда непрерывно удаляется), а побочные продукты – растворяются в одной из фаз. Поэтому межфазная ПК – необратима (а отвод побочных продуктов – не требуется) и позволяет получать линейные полимеры с высокой ММ (до 500000).

9. Часто реакцию ПК проводят в присутствии катализаторов, ускоряющих процесс и уравновешивающих реакцию.

Лекция № 14 - Производство полимерного диэлектрического материала

(на примере полиэтилена)

Рассмотрим упрощенную схему технологического цикла производства полиэтилена высокого давления (ПЭВД).

сырье инициатор ______________________

↓ ↓ ↓

→→→→→→→→→

1 2 3 4 2 5 6 7 8 9

_________________ 

полиэтилен ← ←← ← добавки

14 12 11

1 цех этилена . Установка для производства газообразного этилена располагается вблизи с реактором для синтеза ПЭ путем реакции полимеризации в среде газообразного мономера . Этот технический метод полимеризации обеспечивает получение химически чистого полимера, пригодного для производства диэлектриков. Реакция проводится при повышенном давлении с целью увеличения выхода полимера.

Газообразный этилен, через коллектор – 2 , поступает в смеситель низкого давления – 3 , где смешивается с инициатором при низком давлении. (Реакция полимеризации этилена высокого давления инициируется кислородом или перекисями).



Затем, компрессор 1-го каскада – 4 , сжимает смесь, после чего она через смеситель – 5 и компрессор 2-го каскада – 6 поступает в реактор – 8 , который отделен от компрессорных каскадов огнепреградителем – 7 .

Реакция протекает при температуре (200 – 300)˚С и давлении (1,5 – 3) тысячи атмосфер . Время пребывания реакционной смеси в реакторе не более 30 сек . При этом достигается 15 %-ая степень превращения этилена . непрореагировавший этилен отделяется от полимера в отделителях высокого – 9 и низкого – 10 давления , после чего, через узлы очистки возвратного этилена – 13 и коллекторы – 2 подается, соответственно, в смесители высокого – 5 и низкого - 3 давления . Полученный в реакторе ПЭ смешивается с добавками и гранулируется в 11 , а затем, через пылеулавливатель – 12 идет на упаковку – 14 . Операции 11 – 14 носят название конфекционирование.

Производство ПЭВД опасно по ряду причин: наличие оборудования высокого давления, возможность взрыва и воспламенения этилена при нарушении герметичности технологической линии; наркотического и токсического действия на человека этилена и инициаторов. предельно допустимая концентрация этилена в воздухе – 50 мг/м 3 .

Лекция 16 Превращение полимеров

На электрофизические свойства полимеров влияют не только химическое строение молекул и их гибкость, но и много иных факторов, среди которых особое значение имеет структура материала. Например, если говорить о механической прочности, то фибриллы прочнее сферолитов. Сферолиты большого диаметра более хрупкие, чем мелкие. Поэтому необходим продуманный выбор условий кристаллизации. Но это – упрощенный взгляд на проблему, т.к. морфология полимерного диэлектрика зависит не только от надмолекулярной структуры полимера. На нее влияют способ переработки, методы модификации (т.е. преднамеренного воздействия на полимер с целью изменения свойств материала), температура и многое др., что можно назвать термином «превращение полимеров» под действием внешних факторов в процессе изготовления, хранения и использования.

Превращение это - самопроизвольное, часто нежелательное (деструкция, сшивка) или целенаправленное (сшивка, молекулярная перегруппировка, пластификация) изменение состава, структуры и, как следствие, электрофизических, химических и механических свойств полимеров.

Реакции химических превращений полимеров условно можно разделить на 2 основные группы:

1 . не затрагивающие основную цепь полимера – сшивка, взаимодействие функциональных групп и т.д.;

2. происходящие с изменением основной цепи полимера

а. внутримолекулярные перегруппировки, блоксополимеризация и т.д.;

б. разрыв основной цепи полимера с образованием макроосколков (деструкция) или постепенным отщеплением отдельных звеньев (деполимеризация).

Кроме этого, отдельно стоит рассмотреть взаимное растворение твердых и жидких диэлектриков, что крайне важно применительно к пропитанной полимерной изоляции.

На практике самопроизвольно развивающиеся химические реакции могут протекать одновременно:

______ _________ _______________ ____________ _______

___ _______________ __ |____________ ______ |_____________ ______

___________ _______ ___________ |______ ___ ______ |_______________

деструкция сшивка деструкция и сшивка

В результате образуются пространственные и разветвленные структуры, что существенно снижает эластичность, увеличивает хрупкость, снижает растворимость, а также влияет на электрические и механические свойства полимеров.

Конденсация - это основа создания полимерных синтетических материалов: поливинилхлорида, олефинов. При использовании базовых вариантов мономеров можно путем сополиконденсации получать миллионы тонн новых полимерных веществ. В настоящее время существуют различные методы, которые позволяют не только создавать вещества, но и влиять на молекулярно-массовое распределение полимеров.

Особенности процесса

Реакция поликонденсации - это процесс получения полимера при стадийном присоединении друг к другу молекул полифункциональных мономеров. При этом происходит выделение низкомолекулярных продуктов.

В качестве основы этого процесса можно рассматривать Благодаря выделению побочных продуктов, существуют отличия в элементарном составе полимера и исходного мономера.

Реакция поликонденсации аминокислоты связана с образованием молекул воды в ходе взаимодействия амино- и карбоксильной группы соседних молекул. В этом случае первая стадия реакции связана с образованием димеров, затем они превращаются в высокомолекулярные вещества.

Реакция поликонденсации, пример которой мы рассматриваем, отличается способностью образования на каждом этапе устойчивых веществ. Получаемые при взаимодействии аминокислот димеры, тримеры и полимеры можно выделять на всех промежуточных стадиях из реакционной смеси.

Итак, поликонденсация - это ступенчатый процесс. Для его протекания нужны молекулы мономеров, в составе которых от двух функциональных групп, способных взаимодействовать между собой.

Наличие функциональных групп позволяет олигомерам реагировать не только между собой, но и с мономерами. Подобное взаимодействие характеризует рост цепи полимера. Если у исходных мономеров по две функциональные группы, цепь растет в одном направлении, что приводит к образованию линейных молекул.

Поликонденсация - это реакция, результатом которой будут продукты, способные к последующему взаимодействию.

Классификация

Реакция поликонденсации, пример которой можно записать для многих органических веществ, дает представление о сложности протекающего взаимодействия.

В настоящее время подобные процессы принято классифицировать по определенным признакам:

  • тип связи между звеньями;
  • количество мономеров, принимающих участие в реакции;
  • механизм процесса.

Чем отличается реакция поликонденсации для разных классов органических веществ? Например, при полиамидировании в качестве исходных компонентов используют амины и карбоновые кислоты. В ходе ступенчатого взаимодействия между мономерами наблюдается образование полимера и молекул воды.

При этерификации исходными веществами являются спирт и карбоновая кислота, а условием получения сложного эфира является применение концентрированной серной кислоты в виде катализатора.

Как происходит поликонденсация? Примеры взаимодействий свидетельствуют о том, что в зависимости от числа мономеров можно выделить гомо- и гетерополиконденсацию. Например, при гомополиконденсации в качестве мономеров будут выступать вещества, имеющие сходные функциональные группы. В этом случае конденсация - это объединение исходных веществ с выделением воды. В качестве примера можно привести реакцию между несколькими аминокислотами, в результате которой будет образовываться полипептид (молекула белка).

Механизм процесса

В зависимости от особенностей протекания выделяют обратимую (равновесную) и необратимую (неравновесную) поликонденсацию. Подобное деление можно объяснить присутствием либо отсутствием деструктивных реакций, которые предполагают использование низкомолекулярных процессов, различной активности мономеров, а также допускают отличия в кинетических и термодинамических факторах. Для таких взаимодействий характерны невысокие константы равновесия, незначительная скорость процесса, длительность реакции, высокие температуры.

Во многих случаях для необратимых процессов характерно использование мономеров, отличающихся высокой реакционной способностью.

Высокие скорости процесса с применением мономера такого типа объясняют выбор низкотемпературной и межфазной поликонденсации в растворе. Необратимость процесса обуславливается невысокой температурой реакционной смеси, получением малоактивного химического вещества. В органической химии есть и такие варианты неравновесной поликонденсации, которые протекают в расплавах при высоких температурах. Примером такого процесса является процесс получения из диолов и дигалогенпроизводных полиэфиров.

Уравнение Карозерса

Глубина поликонденсации связана с тщательностью удаления из реакционной среды продуктов низкомолекулярного вида, которые мешают смещению процесса в сторону образования полимерного соединения.

Между глубиной процесса и степенью полимеризации есть зависимость, которая была объединена в математическую формулу. При реакции поликонденсации происходит исчезновение двух функциональных групп и одной молекулы мономера. Так как за время прохождения процесса происходит расходование какого-то количества молекул, глубина реакции связана с долей прореагировавших функциональных групп.

Чем больше будет взаимодействие, тем выше окажется степень полимеризации. Глубина процесса характеризуется продолжительностью реакции, величиной макромолекул. Чем отличается полимеризация от поликонденсации? В первую очередь характером протекания, а также скоростью процесса.

Причины прекращения процесса

Остановка роста цепи полимера вызывается различными причинами химического и физического характера. В качестве основных факторов, способствующих остановке процесса синтеза полимерного соединения, выделим:

  • повышение вязкости среды;
  • снижение скорости процесса диффузии;
  • уменьшение концентрации взаимодействующих веществ;
  • понижение температуры.

При повышении вязкости реакционной среды, а также понижении концентрации функциональных групп идет снижение вероятности столкновения молекул с последующей остановкой процесса роста.

Среди химических причин торможения поликонденсации лидируют:

  • изменение химического состава функциональных групп;
  • непропорциональное количество мономеров;
  • присутствие в системе низкомолекулярного продукта реакции;
  • равновесие между прямой и обратной реакциями.

Специфика кинетики

Реакции полимеризации и поликонденсации связаны с изменением скорости взаимодействия. Проанализируем основные кинетические процессы на примере процесса полиэтерификации.

Кислотный катализ протекает в две стадии. Сначала наблюдается протонирование кислоты - исходного реагента кислотой, выступающей в роли катализатора.

В ходе атаки реагентом спиртовой группы происходит распад интермедиата до продукта реакции. Для протекания прямой реакции важно своевременно удалять из реакционной смеси молекулы воды. Постепенно наблюдается уменьшение скорости процесса, вызываемое увеличением относительной молекулярной массы продукта поликонденсации.

В случае применения эквивалентных количеств функциональных групп на концах молекул взаимодействие может осуществляться длительный промежуток времени, пока не будет создана гигантская макромолекула.

Варианты проведения процессов

Полимеризация и поликонденсация - это важные процессы, используемые в современном химическом производстве. Выделяют несколько лабораторных и промышленных способов проведения процесса поликонденсации:

  • в растворе;
  • в расплаве;
  • в виде межфазного процесса;
  • в эмульсии;
  • на матрицах.

Реакции в расплавах необходимы для получения полиамидов и полиэфиров. В основном в расплаве равновесная поликонденсация протекает в две стадии. Сначала взаимодействие осуществляется в вакууме, что позволяет избежать термоокислительной деструкции мономеров, а также продуктов поликонденсации, гарантирует постепенное нагревание реакционной смеси, полное удаление низкомолекулярных продуктов.

Важные факты

Большая часть реакций проводится без использования катализатора. Вакуумирование расплава на второй стадии реакции сопровождается полной очисткой полимера, поэтому нет необходимости дополнительно проводить трудоемкий процесс переосаждения. Не допускается резкого повышения температуры на первом этапе взаимодействия, поскольку это может привести к частичному испарению мономеров, нарушению количественного соотношения взаимодействующих реагентов.

Полимеризация: особенности и примеры

Данный процесс характеризуется использованием одного исходного мономера. Например, путем такой реакции можно получать полиэтилен из исходного алкена.

Особенностью полимеризации является формирование крупных молекул полимера с заданным количеством повторяющихся структурных звеньев.

Заключение

Путем поликонденсации можно получить множество полимеров, востребованных в различных современных производствах. Например, в ходе этого процесса можно выделить фенолформальдегидные смолы. Взаимодействие формальдегида и фенола сопровождается образованием на первом этапе промежуточного соединения (фенолспирта). Затем наблюдается конденсация, приводящая к получению высокомолекулярного соединения - фенолформальдегидной смолы.

Полученный путем поликонденсации продукт нашел свое применение в создании множества современных материалов. Фенопласты, в основе которых есть данное соединение, обладают прекрасными теплоизоляционными характеристиками, поэтому востребованы в строительстве.

Полиэфиры, полиамиды, полученные путем поликонденсации, используют в медицине, технике, химическом производстве.

Первые упоминания о сложном полиэфире датируются 1833 г., когда ученые Гей-Люссак и Пелуза синтезировали полиэфир на основе молочной кислоты. В 1901 г. Смит впервые синтезировал полиэфиры на основе фталевой кислоты и глицерина, а также нашел им применение в формовочных композициях. В 1941г. Уинфилд и Диксон синтезировали полиэтилентерефталат (ПЭТФ), производство которого в современном мире составляет 68 млн тонн в год.

Ведущую роль в полиуретановой промышленности занимают простые полиэфиры (80%), несмотря на это сложные полиэфиры имеют специфические применения, благодаря уникальным свойствам. Высокое сопротивление к истиранию полиуретанов, основанных на сложных полиэфирах, а также химическая стойкость к растворителям способствовали их интенсивному использованию в покрытиях и для производства подошв обуви. Высокая термическая и окислительная стабильность ароматических полиэфиров используется при производстве жестких изоциануратных пен. Способность к удлинению и растяжению привела к использованию сложных полиэфиров в компонентах для производства эластичных пен.

Сложные полиэфиры получают путем реакции поликонденсации между дикарбоновыми кислотами (а также их производными - эфирами и ангидридами) и диолами (или полиолами), а также путем реакции полимеризации , в результате раскрытия колец циклических эфиров - лактонов и циклических карбонатов.

Рассмотрим основные классы сложных полиэфиров:

Линейные и слаборазветвленные алифатические полиэфиры

Алифатические сложные полиэфиры образуются в результате реакции поликонденсации двухосновной карбоновой кислоты (адипиновой, себациновой, глутаровой) с гликолями (диэтиленгликоль, этиленгликоль, пропиленгликоль, 1,4-бутандиол, 1,6 - гександиол) и разветвляющими агентами (глицерин, триметилолпропан и пентаэритритол). В отличие от простых полиэфиров сложные полиэфиры имеют широкое молекулярно-массовое распределение.

Алифатические сложные полиэфиры чаще всего представляют собой воскообразные твердые вещества с температурой плавления приблизительно 60ᵒС. Исключением являются диэтиленгликоль и 1,2-пропиленгликоль, которые образуют жидкие полиэфиры. Сопротивление гидролизу полиуретанов, основанных на сложных полиэфирах, увеличивается с удлинением цепи сложного полиэфира, так как снижаются остаточная кислотность и уровень катализатора, а разветвление цепи и число полиэфирных связей возрастают. Также это приводит к снижению набухания полиуретанов в растворителях и маслах.

Для термопластов используются воскообразные сложные полиэфиры на основе адипиновой кислоты, этиленгликоля, 1,4 - бутандиола и 1,6 гександиола. Сложные полиэфиры благодаря наличию водородных связей между молекулами показывают более высокие физико-механические показатели, чем простые полиэфиры. Однако есть и недостатки, при повышенных влажности и температуре термопласты на основе сложных полиэфиров подвергаются микробиологическому воздействию. Это ограничивает их применение в тропическом климате. Использование термопластов также ограничено в холодном климате из-за низкой эластичности при отрицательных температурах.

Для эластичных пен используются жидкие сложные полиэфиры с молекулярной массой от 2000 до 3000 г/моль и функциональность 2,05 - 2,2 на основе адипиновой кислоты и диэтиленгликоля, а также применяются разветвители цепи - глицерин, триметилолпропан и пентаэритритол. Сложные полиэфиры имеют вязкость выше, чем простые, что способствует стабилизации ячейки при росте пены. Первичные гидроксильные группы стимулируют раннее гелеобразование при подъеме пены. Поэтому при использовании сложных полиэфиров требуется меньшее количество аминных катализаторов.

Первые промышленные марки эластичных ППУ изготавливали на основе слаборазветвленных сложных полиэфиров и ТДИ. Эластичные ППУ на основе сложных полиэфиров в настоящее время применяются в производстве дублированных тканей, чемоданов, сумок, а также деталей внутренней отделки автомобилей, которые должны быть стойкими к растворителям и иметь повышенную прочность.

На основе стандартных марок сложных полиэфиров с молекулярной массой 2000 г/моль получают материалы с относительным удлинением 150-300% в зависимости от плотности и рецептуры ППУ. Более мягкие ППУ, получаемые на основе ТДИ 80/20, при изоцианатном индексе 90-98 имеют относительное удлинение при разрыве 350-450% и применяются главным образом для дублирования тканей. Типичный полужеский блочный ППУ образуется в результате взаимодействия ТДИ со смесью 50:50 стандартного сложного полиэфира и сильноразветвленного сложного полиэфира.

Сложные полиэфиры также используются как исходные компоненты для полиуретановых клеев. В качестве гидроксилсодержащих соединений применяют полиэфир, например, на основе себациновой кислоты, глицерина и гликоля. В качестве изоцианатов используют ТДИ, МДИ, продукты реакции ТДИ с триметилолпропаном и другими многоатомными спиртами.

Ароматические сложные полиэфиры.

Ароматические сложные полиэфиры применяются в жестких полиуретановых и полиизоцианутратных пенах.

Развитие высоко сшитых быстрых полиизоцианутратных PIR пен привело к активному применению сложных полиэфиров, так как высокая функциональность полиэфира не требуется, сшивку обеспечивают изоцианураты. Полиизоциануратные пены – это гибридные структуры, содержащие как полиуретановые группы, так и изоциануратные кольца. Изоцианатный индекс находится в диапазоне от 200 до 300 и выше. PIR пенопласты имеют более высокую температуру эксплуатации 140⁰С против 100⁰С и меньшую скорость распространения пламени.

Главное достоинство PIR – стойкость к воздействию открытого огня – обусловлена образованием под действием высокой температуры пламени сетки из карбонизированного материала, сохраняющей макроструктуру исходного пенопласта. Этот материал (пенококс) – разрушается очень медленно, играя роль барьера, препятствующего распространению пламени. Кроме того, из-за образования кокса при горении выделяется значительно меньше тепла. Уретановые структуры разрушаются при 200⁰С при этом коксуются на 20%, тогда как изоциануратные структуры разрушаются при 325⁰С и коксуются на 50%.

Термическая стабильность и коксование также зависит от полиольной структуры. Ароматические структуры менее горючи алифатических. Все это привело к распространению ароматических сложных полиэфиров с низкой функциональностью, низкой вязкостью и низкой себестоимостью.

Полиэфиры на основе ПЭТФ находят применение для жестких PUR пен: например, полиэфир с эквивалентным весом 181 г/моль, функциональностью 2,3, гидроксильным числом 295-335 мгKOH/г и вязкостью 8000-10000мПа.с при 25°C.

Для производства PIR пен используют сложный полиэфир на основе ПЭТФ с эквивалентным весом 238 г/моль, функциональностью 2, гидроксильным числом 230-250 мгKOH/г и вязкостью 2700-5500мПа.с при 25°C.

Применение ароматических сложных полиэфиры на основе фталевого ангидрида в быстрых PIR/PUR пенах приводит к хорошим физико-механическим свойствам, низкому дымообразованию, термической стабильности и огнестойкости. Проблема плохой совместимости полиэфиров на основе фталевого ангидрида со вспенивающими агентами решается путем введения в состав растительных масел, использования в системах эмульгаторов, аминов и простых полиэфиров.

Для производства PIR-панелей используются в основном ароматические сложные полиэфиры на основе ФА со следующими параметрами: гидроксильное число от 190 до 320 мг KOH/г, функциональность 2 – 2,4, кислотное число менее 1,0 мг KOH/г, вязкость (25 °C) от 2000 до 9000 мПа.с.

Поликапролактоны - образуются за счет открытия колец ԑ-капролактонов в присутствии инициаторов и катализаторов. Поликапролактоны имеют гораздо более узкое молекулярно-массовое распределение, нежели полиэфиры на основе двухосновных карбоновых кислот и низкую вязкость. Введение поликапролактонов в систему позволяет достичь высокой гидролитической стабильности из-за присутствия относительно длинных повторяющихся гидрофобных сегментов (СH 2) n и требуемой эластичности даже при низких температурах, однако их использование в промышленности ограничено их высокой себестоимостью.

Поликапролактоны преимущественно используют в двухкомпонентных лакокрасочных материалах с высоким сухим остатком. В данной области они составляют конкуренцию полиэфирполиолам, стоимость которых меньше. Поликапролактоновые полиэфиры также находят применение в качестве сегментов в других полимерах. Например, их рекомендуют использовать в рецептуре лакокрасочного материала, наносимого методом катионного электроосаждения, для пластифицирования эпоксидной смолы или в качестве мягких сегментов в полиуретановых дисперсиях.

Поликарбонаты

Поликарбонаты высокопрозрачные, теплостойкие, обладают хорошими механическими свойствами, не подвержены гидролизу, так как каталитически активные карбоксильные группы отсутствуют. Поликарбонаты при комнатной температуре являются твердыми веществами, в зависимости от массы температура плавления лежит в диапазоне от 40-60⁰С.

Высокомолекулярные поликарбонаты используют для окраски строительных деталей и конструкций, отделки автомобилей, в электронике. Низкомолекулярные поликарбонаты 1000-4000 г/моль представляют больший интерес для ЛК-отрасли. Они отверждаются продуктами присоединения алифатических и циклоалифатических полиизоцианатов. В результате получаются продукты с высокой атмосферостойкостью.

Олигоэфиракрилаты

Продукты, полученные на основе сложных полиэфиров с концевыми гидроксильными группами в присутствии акриловой кислоты. Такие продукты с двойными связями используют в лакокрасочных материалах, отверждаемых под действием УФ-лучей. В результате радикальной полимеризации в присутствии УФ-инициаторов продукты сшиваются, образуя правильную сетчатую структуру. На свойства покрытий оказывают влияние размер и состав полиэфирного сегмента. Разветвленные полиэфиры с низкой молекулярной массой создают плотную сетчатую структуры, тогда как длинные алифатические цепи приводят к эластичности пленки.

Вконтакте

СЫРЬЕ

Этиленгликоль
Глицерин
Фталевый ангидрид
Диэтиленгликоль
Аллилопый спирт
1,2-Пропиленгликоль
4,4"-Дигидроксидифенил-2-пропан
Терефталевая кислота
Малеиновый ангидрид
Дипропиленгликоль
Фумаровая кислота
Метакриловая кислота

Схема производства полиэфирмалеинатов:
1 - реактор; 2,3 - холодильники; 4 - сборник конденсата; 5 - вакуум-насос;
6,11 - фильтр; 7 - смеситель; 8 - мерник-дозатор; 9 - насос; 10 - емкость для
стирола; 12 - тара
Этиленгликоль (или другой многоатомный спирт) сливают в
эмалированный или выполненный из нержавеющей стали реактор 1,
снабженный мешалкой, рубашкой для обогревай охлаждения, обратным
холодильником 2, и нагревают до 60-70 °С. Пропускают диоксид углерода
или азот и постепенно при перемешивании загружают твердые кислоты и
катализатор реакции. Температуру повышают до 160-210 °С и поддерживают
ее в течение 6-30 ч в зависимости от синтезируемой марки НПЭФ.
Выделяющаяся вода током газа уносится из сферы реакции и, пройдя
холодильник 2, конденсируется в холодильнике 3 и собирается в сборнике
конденсата 4. Вместе с парами воды газ частично уносит гликоль, который
после охлаждения в холодильнике 2, где поддерживается температура выше
100 °С, сливается обратно в реактор 1.
Обычно поликонденсацию заканчивают при кислотном числе
реакционной смеси 20-45 мг КОН/г. Готовый НПЭФ, охлажденный до 70 °С,
сливают в смеситель 7, куда предварительно подается мономер из емкости
10 в количестве 30-55 % от массы смолы.
Для предотвращения преждевременной сополимеризации в
смесителе и при последующем хранении в композицию вводят 0,01-0,02 %
гидрохинона. После 2-4-часового перемешивания и охлаждения
однородную прозрачную смесь фильтруют на фильтре 11 и сливают в тару
12.

Полиэтилентерефталат

В реактор 1, нагретый до 140 °С, загружают диметилтерефталат и
раствор ацетата цинка в нагретом до 125 °С этиленгликоле.
Переэтерификацию проводят в токе азота или углекислого газа при 200230 °С в течение 4-6 ч. Реактор снабжен насадочной колонной 2, которая
служит для разделения паров этиленгликоля и метилового спирта.
Метиловый спирт из холодильника 3 собирается в приемник 4, а
возгоняющийся диметилтерефталат смывается в колонне этиленгликолем
с насадки и возвращается обратно в реактор. После отгонки метилового
спирта температуру в реакторе повышают до 260-280 °С и отгоняют
избыточный этиленгликоль. Расплавленный дигликольтерефталат
сливают через металлический сетчатый фильтр 5 в реактор 6. После его
загрузки в течение 0,5-1 ч создают вакуум (остаточное давление 267 Па).
Поликонденсацию проводят при 280 °С в течение 3-5 ч до получения
расплава заданной вязкости. Выделившийся этиленгликоль отгоняют,
конденсируют в холодильнике 7 и собирают в приемник 8.
Расплавленный ПЭТ сжатым азотом выдавливают из реактора через
щелевое отверстие в виде пленки на барабан 9, помещенный в ванну с
водой. Охлажденная пленка рубится на станке 10 и в виде крошки
поступает на подсушку и упаковку.
Схема производства полиэтилептерефталата:
1,6 - реакторы; 2 - насадочная колонна; 3,7 - холодильники; 4,8-
приемники; 5 - фильтр; 9 - охлаждаемый барабан; 10 - дробилка

Поликарбонат

Способ фосгенирования
Способ переэтерефикации

Схема производства поликарбоната периодическим методом:
1 - реактор; 2, 6 - холодильники; 3 - промыватель; 4 - аппарат
для обезвоживания; 5 - насадочная колонна; 7 - осадитель; 8 -
фильтр; 9 - сушилка; 10 - гранулятор
В реактор 1, снабженный лопастной мешалкой (8-12 об/с),
загружают 10 %-ный щелочной раствор ДФП, метиленхлорид,
катализатор (соль четвертичного аммониевого основания), а
затем в перемешиваемую смесь при 20-25 °С вводят фосген.
Поликонденсацию проводят в течение 7-8 ч в атмосфере азота
или аргона, так как феноляты окисляются кислородом воздуха.
Выделяющееся тепло реакции отводится при помощи холодной
воды, подаваемой в рубашку реактора, и с испаряющимся
метиленхлоридом, который после конденсации в холодильнике
2 возвращается в реактор.
Полимер по мере образования растворяется в метиленхлориде.
Вязкий 10 %-ный раствор поступает в промыватель 3, где при
перемешивании нейтрализуется раствором соляной кислоты и
разделяется на две фазы. Водную фазу, содержащую
растворенный хлорид натрия, отделяют и сливают в линию
сточных вод. Органическую фазу многократно промывают водой
(водную фазу после каждой промывки отделяют) и подают на
обезвоживание в аппарат 4. Пары воды проходят через
насадочную колонну 5, конденсируются в холодильнике 6 и
поступают в сборник воды. Раствор ПК подается в осадитель 7, в
котором ПК осаждают метиловым спиртом или ацетоном. Из
суспензии ПК отделяют на фильтре 8 и в виде порошка
направляют в сушилку 9, а затем в гранулятор 10 для получения
гранул. Гранулы либо бесцветные, либо имеют цвет до светлокоричневого. Смесь растворителя и осадителя поступает на
регенерацию.

Схема производства поликарбоната непрерывным методом:
1,2, 3 - реакторы; 4,6 - аппараты для разделения; 5 - экстракционная
колонна; 7 - отгонная колонна; 8, 10 - холодильники; 9 - осадительная
колонна
При непрерывном методе производства ПК все компоненты - водный раствор
дифенолята натрия, получаемый растворением бисфенола водной щелочи,
метиленхлорид и фосген - через дозаторы непрерывно поступают в первый
реактор 1 каскада реакторов. Быстрое перемешивание обеспечивает
протекание реакции. Образующийся олигомер перетекает в реактор 2 и затем в
реактор 3. Во всех реакторах температура поддерживается в пределах 25-30 °С.
В реактор 3 для углубления процесса поликоиденсации и получения полимера
высокой молекулярной массы вводится катализатор (водный раствор
алкиларилхлорида аммония).
Реакционная смесь, состоящая из водной и органической фаз, поступает в
аппарат 4 для непрерывного разделения. Водная фаза подается на очистку, а
раствор ПК в метиленхлориде промывается водой в экстракционной колонне 5
и отделяется от воды в аппарате 6. Промытый раствор полимера проходит
отгонную колонну 7 для отделения остатка воды в виде азеотропной смеси
вода-метиленхлорид, пары которой охлаждаются в холодильнике 8 и поступают
на разделение.
Обезвоженный раствор ПК в метиленхлориде после охлаждения в
теплообменнике и фильтрования (фильтр на схеме не показан) поступает для
слива в тару (при использовании в качестве лака при получении пленок и
покрытий) или после подогрева до 130 °С под давление 6 МПа с помощью
форсунки подается в осадительную колонну 9. В этой колонне вследствие
снижения давления До атмосферного и испарения метиленхлорида ПК
выделяется в виде порошка и осаждается в нижнюю часть колонны. Пары
метиленхлорида поступают на конденсацию в холодильник 10, а порошок
полимера - на грануляцию.

Полиарилаты

10.

Схема производства полиарилатов периодическим методом
1 - аппарат для приготовления раствора дихлорангидридов; 2 - аппарат для
приготовления раствора бисфепола; 3 - реактор; 4 - сборник суспензии; 5 -
центрифуга; 6 - сборник влажного порошка
Межфазная поликонденсация протекает на границе
раздела фаз, образующейся при сливании раствора
дихлорангидрида дикарбоновой кислоты (или смеси
дихлорангидридов разных дикарбоновых кислот) в
органическом растворителе (раствор I) с водно-щелочным
раствором двухатомного фенола (раствор II). В
промышленности этот процесс осуществляют следующим
образом. В аппарате 1 готовят раствор I из
дихлорангидридов терефталевой и изофталевой кислот в
п-ксилоле, а в аппарате 2 - раствор II из ДФП, водного
раствора едкого натра и эмульгатора. Профильтрованные
растворы подают в реактор 3, где при 20-25 °С и
перемешивании мешалкой в течение 20-40 мин
происходит
реакция
поликонденсации,
сопровождающаяся выделением полимера в виде
порошка. Суспензию собирают в сборнике 4, порошок
полимера отделяют на центрифуге 5, многократно
промывают его водой, переводят в сборник влажного
порошка 6 и подают па сушку в сушилку с кипящим слоем.
Высушенный мелкодисперсный порошок поступает на
упаковку или на грануляцию.

Выбор способа проведения поликонденсации определяется физико-химическими свойствами исходных веществ и образующихся полимеров, технологическими требованиями, задачами, которые ставятся при осуществлении процесса, и т.д.

По температуре способы проведения поликонденсации делят на высокотемпературные (не ниже 200С) и низкотемпературные (0-50С), по агрегатному состоянию реакционной системы или фазовому состоянию - на поликонденсацию в массе (расплаве), твердой фазе , растворе , эмульсии (суспензии), двухфазной системе (межфазная поликонденсация - например, на границе раздела органической фазы с дихлорангидридом и водной с диамином получается пленка полиамида).

Поликонденсация в расплаве и твердой фазе происходит при высоких температурах; поликонденсация в эмульсии и межфазная поликонденсация - при низких температурах; поликонденсация в растворе - при высоких и низких температурах.

Низкотемпературная поликонденсация является преимущественно неравновесной , высокотемпературная - преимущественно равновесной .

Поликонденсация в расплаве , способ проведения поликонденсацин (как правило, равновесной) в отсутствие растворителя или разбавителя; образующийся полимер находится в расплавленном состоянии. Исходные вещества (и иногда катализатор) нагревают при температуре на 10-20°С превышающей температуру плавления (размягчения) образующегося полимера (обычно при 200-400 °С). Во избежание окисления мономеров и термоокислительной деструкции полимера процесс вначале проводят в атмосфере инертного газа (часто осушенного), а оканчивают в вакууме для более полного удаления низкомолекулярных продуктов реакции и смещения равновесия в сторону образования высокомолекулярного полимера.

Преимущества способа : возможность применения малореакционно способных мономеров, сравнительная простота технологической схемы, высокие выход и степень чистоты образующегося полимера, возможность формования из полученного расплава полимера волокон и пленок.

Недостатки : необходимость использования термически устойчивых мономеров и проведения процесса при высоких температурах, длительность процесса, использование катализаторов.

Из-за высокой вязкости расплавов большинства полимеров скорость на заключительных стадиях процесса определяется не столько активностью реагирующих групп, сколько диффузионными факторами (подвижностью макромолекул).

Поликонденсация в расплаве - практически единственный промышленный способ синтеза алифатических полиамидов и сложных полиэфиров (например, полиамида-6,6 и полиэтилентерефталата ). Её осуществляют по периодической и непрерывной схеме. В первом случае процесс проводят в автоклаве, выдавливая из него готовый полимер азотом через обогреваемый вентиль. Непрерывный процесс проводят в U- и L-образных, а также трубчатых реакторах, снабженных на выходе полимера шнековой мешалкой, обеспечивающей эффективное перемешивание расплава и его выдавливание через фильеру в виде моноволокна, жгута или пленки. Трубчатый аппарат не нуждается в мешалке, так как процесс проходит в тонком слое.

В лабораторной практике методом поликонденсации в расплаве синтезируют полиамиды , сложные полиэфиры , полигетероарилены , блочные и статистические сополимеры.

Поликонденсация в растворе - способ проведения поликонденсации, при котором мономеры и образующийся полимер находятся в растворе в одной фазе. Возможны различные варианты метода, когда мономер и (или) полимер частично растворимы в реакционной среде. Для получения полимеров высокой ММ мономеры и полимер должны, как правило, полностью растворяться в реакционной среде, что достигается использованием смеси двух и более растворителей или повышением температуры реакции. Обычно процесс проводят при 25-250°С. Получаемый полимер может образовывать термодинамически неустойчивые (метастабильные) растворы или лиотропные жидкокристаллические системы. После выпадения полимера из такого раствора заново растворить его в данном растворителе не удается. В выпавшем в осадок кристаллическом полимере, не набухающем в реакционном растворе, рост макромолекул прекращается; в аморфном полимере, способном к набуханию, продолжается. Выпадение из реакционного раствора полимера может приводить к его кристаллизации.

Преимущества способа : возможность проведения процесса при сравнительно невысоких температурах; способность растворителя выполнять функции катализатора; хорошая теплопередача; возможность непосредственного использования полученных растворов полимеров для изготовления пленок и волокон.

Отличительная особенность - влияние природы растворителя на мол. массу и структуру образующегося полимера. Известны примеры, когда растворитель (пиридин, третичные амины, N,N-диметилацетамид, N-метилпирролидон и др.) связывает кислоту, образующуюся в реакции, напр. при полиэтерификации или полиамидировании (т.н. акцепторно-каталитич. поликонденсация ). Растворитель и содержащиеся в нем примеси, например, Н 2 О, могут вызывать протекание побочных реакций, приводящих к блокированию функциональных групп. Особое место среди них занимает циклизация, интенсивность которой возрастает с уменьшением концентрации реакционного раствора.

В лабораторной практике методом полимеризации в растворе синтезируют различные карбо - и гетероцепные полимеры , в т.ч. элементоорганические (полиацетилены, полиамиды, сложные и простые полиэфиры, полисульфоны, полигетероарилены, полисилоксаны и др.).

Технология и аппаратурное оформление зависят от типа поликонденсации. При равновесной (обратимой) поликонденсации в растворе процесс проводят при 100-250°С и применяют растворители, которые хорошо растворяют образующиеся полимеры, а низкомолекулярные продукты реакции - плохо. Температура кипения таких растворителей должна быть выше, чем у низкомолекулярных продуктов реакции. Иногда используют растворители, образующие с низкомолекулярным продуктом реакции азеотропную смесь, температура кипения которой ниже, чем у растворителя (азеотропная поликонденсация ). В промышленности этот процесс применяют редко. Первая стадия производства ряда сложных полиэфиров, например, полиэтилентерефталата, представляет собой разновидность равновесной поликонденсации в растворе, когда растворителем служит один из мономеров (в данном примере - этиленгликоль), взятый в избытке.

Неравновесную (необратимую) поликонденсацию в растворе подразделяют на низко- и высокотемпературную - температуры процесса соответственно ниже 100°С и выше 100°С (чаще до 200°С). Разновидность низкотемпературной поликонденсации в растворе - эмульсионная поликонденсация, когда образование полимера происходит в органической фазе водно-органической гетерогенной системы. Выделяющийся ННа1 нейтрализуют в водной фазе карбонатами или гидроксидами щелочных металлов. В промышленности неравновесную поликонденсацию в растворе используют в производстве полиамидов , поликарбонатов , полиарилатов , полигетероариленов и других и осуществляют по периодической схеме.

Поликонденсация в твёрдой фазе (твердофазная поликонденсация ), способ проведения поликонденсации, когда мономеры или олигомеры находятся в кристаллическом или стеклообразном состоянии и образуется твердый полимер. Возможна разновидность твердофазной поликонденсации, когда в ходе ее исходные вещества плавятся или размягчаются. По многим признакам (условия проведения, закономерности процесса) твердофазная поликонденсация похожа на поликонденсацию в расплаве. Подробно изучена твердофазная поликонденсация алифатических (-аминокислот, для которой характерно наличие автокатализа вследствие увеличения в ходе реакции поверхности раздела мономер-полимер, на которой молекулы мономера более подвижны, чем в кристалле.

Метод используют для получения полигетероариленов из высокореакционноспособных мономеров. Проводя процесс под давлением в пресс-форме, совмещают синтез полимера и формование изделия. Таким способом, в частности, получают монолитные изделия из полиимидов, поли(ароилен-бис -бензимидазолов).

Важная разновидность твердофазной поликонденсации - вторая стадия процесса образования многих полигетероариленов , осуществляемая в пленках или волокнах, сформованных из предварительно полученных промежуточных высокомолекулярных полимеров (форполимеров). Это - термический процесс внутримолекулярной полициклизации, проводимой в токе инертного газа или вакууме при температурах, лежащих обычно ниже температуры стеклования промежуточного полимера (например, полиамидокислоты) или выше её, но ниже температуры стеклования или температуры размягчения конечного полигетероарилена. В отдельных случаях (например, при превращение полигидразидов в поли-1,3,4-оксадиазолы) наблюдается кинетическое торможение процесса из-за повышения температуры стеклования в ходе циклизации; тогда прибегают к ступенчатому повышению температуры. Иногда полициклизация сопровождается твердофазной поликонденсацией по концевым функциональным группам макромолекул, приводя к повышению молекулярной массы полимера.



Рекомендуем почитать

Наверх