Вращение по окружности формулы. Движение по окружности

Вредители 05.07.2023
Вредители

1.Равномерное движение по окружности

2.Угловая скорость вращательного движения.

3.Период вращения.

4.Частота вращения.

5.Связь линейной скорости с угловой.

6.Центростремительное ускорение.

7.Равнопеременное движение по окружности.

8.Угловое ускорение в равнопеременном движении по окружности.

9.Тангенциальное ускорение.

10.Закон равноускоренного движения по окружности.

11. Средняя угловая скорость в равноускоренном движении по окружности.

12.Формулы, устанавливающие связь между угловой скоростью, угловым ускорением и углом поворота в равноускоренном движении по окружности.

1.Равномерное движение по окружности – движение, при котором материальная точка за равные интервалы времени проходит равные отрезки дуги окружности, т.е. точка движется по окружности с постоянной по модулю скоростью. В этом случае скорость равна отношению дуги окружности, пройденной точкой ко времени движения, т.е.

и называется линейной скоростью движения по окружности.

Как и в криволинейном движении вектор скорости направлен по касательной к окружности в направлении движения (Рис.25).

2. Угловая скорость в равномерном движении по окружности – отношение угла поворота радиуса ко времени поворота:

В равномерном движении по окружности угловая скорость постоянна. В системе СИ угловая скорость измеряется в(рад/c). Один радиан – рад это центральный угол, стягивающий дугу окружности длиной равной радиусу. Полный угол содержит радиан, т.е. за один оборот радиус поворачивается на угол радиан.

3. Период вращения – интервал времени Т, в течении которого материальная точка совершает один полный оборот. В системе СИ период измеряется в секундах.

4. Частота вращения – число оборотов , совершаемых за одну секунду. В системе СИ частота измеряется в герцах (1Гц = 1 ) . Один герц – частота, при которой за одну секунду совершается один оборот. Легко сообразить, что

Если за время t точка совершает n оборотов по окружности то .

Зная период и частоту вращения, угловую скорость можно вычислять по формуле:

5 Связь линейной скорости с угловой . Длина дуги окружности равна где центральный угол, выраженный в радианах, стягивающий дугу радиус окружности. Теперь линейную скорость запишем в виде

Часто бывает удобно использовать формулы: или Угловую скорость часто называют циклической частотой, а частоту линейной частотой.

6. Центростремительное ускорение . В равномерном движении по окружности модуль скорости остаётся неизменным , а направление её непрерывно меняется (Рис.26). Это значит, что тело, движущееся равномерно по окружности, испытывает ускорение, которое направлено к центру и называется центростремительным ускорением.

Пусть за промежуток времени прошло путь равный дуге окружности . Перенесём вектор , оставляя его параллельным самому себе, так чтобы его начало совпало с началом вектора в точке В. Модуль изменения скорости равен , а модуль центростремительного ускорения равен

На Рис.26 треугольники АОВ и ДВС равнобедренные и углы при вершинах О и В равны, как углы с взаимно перпендикулярными сторонами АО и ОВ Это значит, что треугольники АОВ и ДВС подобные. Следовательно Если то есть интервал времени принимает сколь угодно малые значения, то дугу можно приближенно считать равной хорде АВ, т.е. . Поэтому можем записать Учитывая, что ВД= , ОА=R получим Умножая обе части последнего равенства на , получим и далее выражение для модуля центростремительного ускорения в равномерном движении по окружности: . Учитывая, что получим две часто применяемые формулы:

Итак, в равномерном движении по окружности центростремительное ускорение постоянно по модулю.

Легко сообразить, что в пределе при , угол . Это значит, что углы при основании ДС треугольника ДВС стремятся значению , а вектор изменения скорости становится перпендикулярным к вектору скорости , т.е. направлен по радиусу к центру окружности.

7. Равнопеременное движение по окружности – движение по окружности, при котором за равные интервалы времени угловая скорость изменяется на одну и ту же величину.

8. Угловое ускорение в равнопеременном движении по окружности – отношение изменения угловой скорости к интервалу времени , в течении которого это изменение произошло, т.е.

где начальное значение угловой скорости, конечное значение угловой скорости, угловое ускорение, в системе СИ измеряется в . Из последнего равенства получим формулы для вычисления угловой скорости

И , если .

Умножая обе части этих равенств на и учитывая, что , - тангенциальное ускорение, т.е. ускорение, направленное по касательной к окружности, получим формулы для вычисления линейной скорости:

И , если .

9. Тангенциальное ускорение численно равно изменению скорости в единицу времени и направлено вдоль касательной к окружности. Если >0, >0, то движение равноускоренное. Если <0 и <0 – движение.

10. Закон равноускоренного движения по окружности . Путь, пройденный по окружности за время в равноускоренном движении, вычисляется по формуле:

Подставляя сюда , , сокращая на , получим закон равноускоренного движения по окружности:

Или , если .

Если же движение равнозамедленное, т.е. <0, то

11.Полное ускорение в равноускоренном движении по окружности . В равноускоренном движении по окружности центростремительное ускорение с течением времени возрастает, т.к. благодаря тангенциальному ускорению возрастает линейная скорость. Очень часто центростремительное ускорение называют нормальным и обозначают как . Так как полное ускорение в данный момент определяют по теореме Пифагора (Рис.27).

12. Средняя угловая скорость в равноускоренном движении по окружности . Средняя линейная скорость в равноускоренном движении по окружности равна . Подставляя сюда и и сокращая на получим

Если , то .

12. Формулы, устанавливающие связь между угловой скоростью, угловым ускорением и углом поворота в равноускоренном движении по окружности .

Подставляя в формулу величины , , , ,

и сокращая на , получим

Лекция- 4. Динамика.

1. Динамика

2. Взаимодействие тел.

3. Инерция. Принцип инерции.

4. Первый закон Ньютона.

5. Свободная материальная точка.

6. Инерциальная система отсчета.

7. Неинерциальная система отсчета.

8. Принцип относительности Галилея.

9. Преобразования Галилея.

11. Сложение сил.

13. Плотность веществ.

14. Центр масс.

15. Второй закон Ньютона.

16. Единица измерения силы.

17. Третий закон Ньютона

1. Динамика есть раздел механики, изучающий механическое движение, в зависимости от сил, вызывающих изменение этого движения.

2.Взаимодействия тел . Тела могут взаимодествовать, как при непосредственном соприкосновенном соприкосновении, так и на расстоянии посредством особого вида материи, называемого физическим полем.

Например, все тела притягиваются друг к другу и это притяжение осуществляется посредством гравитационного поля, а силы притяжения называются гравитационными.

Тела, несущие в себе электрический заряд, взаимодействуют посредством электрического поля. Электрические токи взаимодействуют посредством магнитного поля. Эти силы называют электромагнитными.

Элементарные частицы взаимодействуют посредсвом ядерных полей и эти силы называют ядерными.

3.Инерция . В IV в. до н. э. греческий философ Аристотель утверждал, что причиной движения тела является сила, действующая со стороны другого тела или тел. При этом, по движения мнению Аристотеля постоянная сила сообщает телу постоянную скорость и с прекращением действия силы прекращается движение.

В 16 в. итальянский физик Галилео Галилей, проводя опыты с телами, скатывающимися по наклонной плоскости и с падающими телами показал, что постоянная сила (в данном случае вес тела) сообщает телу ускорение.

Итак, на основе экспериментов Галилей показал, что сила причина ускорения тел. Приведем рассуждения Галилея. Пусть очень гладкий шар катится по гладкой горизонтальной плоскости. Если шару ничего не мешает, то он может катиться сколь угодно долго. Если же на пути шара насыпать тонкий слой песка, то он очень скоро остановится, т.к. на него подействовала сила трения песка.

Так Галилей пришел к формулировке принципа инерции, согласно которому материальное тело сохраняет состояние покоя или равномерного прямолинейного движения, если на не действуют внешние силы. Часто это свойство материи называют инерцией, а движение тела без внешних воздействий- движением по инерции.

4. Первый закон Ньютона . В 1687 году на основе принципа инерции Галилея Ньютон сформулировал первый закон динамики – первый закон Ньютона:

Материальная точка (тело) находится в состоянии покоя или равномерного прямолинейного движения, если на неё не действуют другие тела, либо силы, действующие со стороны других тел, уравновешены, т.е. скомпенсированы.

5.Свободная материальная точка – материальная точка, на которую не действуют другие тела. Иногда говорят – изолированная материальная точка.

6. Инерциальная система отсчета (ИСО) – система отсчёта, относительно которой изолированная материальная точка движется прямолинейно и равномерно, либо находится в состоянии покоя.

Любая система отсчёта, которая движется равномерно и прямолинейно относительно ИСО является инерциальной,

Приведём ещё одну формулировку первого закона Ньютона: Существуют системы отсчёта, относительно которых свободная материальная точка движется прямолинейно и равномерно, либо находится в состоянии покоя. Такие системы отсчёта называются инерциальными. Часто первый закон Ньютона называют законом инерции.

Первому закону Ньютона можно дать ещё и такую формулировку: всякое материальное тело сопротивляется изменению его скорости. Это свойство материи называется инертностью.

С проявлением этого закона мы сталкиваемся ежедневно в городском транспорте. Когда автобус резко набирает скорость, нас прижимает к спинке сидения. Когда же автобус тормозит, то наше тело заносит по ходу движения автобуса.

7. Неинерциальная система отсчёта – система отсчёта, которая движется неравномерно относительно ИСО.

Тело, которое относительно ИСО находится в состоянии покоя или равномерного прямолинейного движения. Относительно неинерциальной системы отсчёта движется неравномерно.

Любая вращающаяся система отсчёта есть неинерциальная система отсчёта, т.к. в этой системе тело испытывает центростремительное ускорение.

В природе и технике нет тел, которые могли бы служить в качестве ИСО. Например, Земля вращается вокруг своей оси и любое тело на её поверхности испытывает центростремительное ускорение. Однако в течение достаточно коротких промежутков времени систему отсчёта, связанную с поверхностью Земли в некотором приближении можно считать ИСО.

8.Принцип относительности Галилея. ИСО может быть соль угодно много. Поэтому возникает вопрос: как выглядят одни и те же механические явления в разных ИСО? Можно ли используя механические явления, обнаружить движение ИСО, в которой они наблюдаются.

Ответ на эти вопросы дает принцип относительности классической механики, открытый Галилеем.

Смысл принципа относительности классической механики заключается в утверждении: все механические явления протекают совершенно одинаково во всех инерциальных системах отсчёта.

Этот принцип можно сформулировать и так: все законы классической механики выражаются одинаковыми математическими формулами. Иными словами никакие механические опыты не помогут нам обнаружить движение ИСО. Это значит, что попытка обнаружить движение ИСО лишена смысла.

С проявлением принципа относительности мы сталкивались, путишествуя в поездах. В момент, когда наш поезд стоит на станции, а поезд, стоявший на соседнем пути, медленно начинает движение, то в первые мгновения нам кажется, движется наш поезд. Но бывает и наоборот, когда наш поезд плавно набирает ход, нам кажется, что движение начал соседний поезд.

В приведённом примере принцип относительности проявляется в течение малых интервалов времени. С увеличением скорости мы начинаем ощущать толчки раскачивание вагона, т. е. наша система отсчёта становится неинерциальной.

Итак, попытка обнаружить движение ИСО лишена смысла. Следовательно, абсолютно безразлично, какую ИСО считать неподвижной, а какую – движущейся.

9. Преобразования Галилея . Пусть две ИСО и движутся друг относительно друга со скоростью . Согласно с принципом относительности мы можем положить, что ИСО К неподвижна, а ИСО движется относительно со скоростью . Для простоты положим, что соответствующие оси координат систем и параллельны, а оси и совпадают. Пусть в момент начала систем совпадают и движение происходит вдоль осей и , т.е. (Рис.28)

Законы, определяющие движение тела по окружности, аналогичны законам поступательного движения. Уравнения, описывающие вращательное движение, можно вывести из уравнений поступательного движения, произведя в последних следующие замены:

Если:
перемещение s - угловое перемещение (угол поворота) ? ,
скорость u - угловая скорость ? ,
ускорение a - угловое ускорение ?

Угол поворота

Во всех уравнения вращательного движения углы задаются в радианах, сокращенно (рад) .

Если
? - угловое перемещение в радианах,
s - длина дуги, заключенной
между сторонами угла поворота,
r - радиус,
то по определению радиана

Соотношение между единицами угла

Обратите внимание: Наименование единицы радиан (рад) обычно указывается в формулах только в тех случаях, когда ее можно спутать с градусом. Поскольку радиан равен отношению длин двух отрезков
(1рад = 1м/ 1м = 1), он не имеет размерности.

Соотношение между угловой скоростью, угловым перемещением и временем для всех видов движения по окружности наглядно видны на графике угловой скорости (зависимость ? от t ). Поэтому графику можно определить, какой угловой скоростью обладает тело в тот или иной момент времени и на какой угол с момента начала движения оно повернулось (он характеризуется площадью под кривой).

Кроме того, для представления соотношений между названными величинами используют график углового перемещения (зависимость ? от t ) и график углового ускорения (зависимость ? от t ).

Число оборотов

Характеристикой всех видов вращения является число оборотов n или равноценная ей характеристика - частота f . Обе величины характеризуют число оборотов в единицу времени.

Единица СИ частоты (или числа оборотов)

В технике число оборотов обычно измеряется в оборотах в минуту (об/мин) = 1/мин.

Таким образом, величина, обратная числу оборотов, есть продолжительность одного оборота.

Если
n - число оборотов,
f - частота,
T - продолжительность одного оборота, период,
? - угловое перемещение,
N - полное число оборотов,
t - время, продолжительность вращения,
? - угловая частота,
то

Период

Угловое перемещение

Угловое перемещение равно произведению полного числа оборотов на 2?:

Угловая скорость

Из формулы для одного оборота следует:

Обратите внимание:
формулы справедливы для всех видов вращательного движения - как для равномерного движения, так и для ускоренного. В них могут входить постоянные величины, средние значения, начальные и конечные значения, а также любые мгновенные значения.
вопреки своему названию число оборотов n - это не число, а физическая величина.
следует различать число оборотов n и полное число оборотов N .

Равномерное движение тела по окружности

Говорят, что тело движется по окружности равномерно, если его угловая скорость постоянна, т.е. тело за равные промежутки времени поворачивается на один и тот же угол.

? - угловая скорость (постоянная в течение времени t )
? - угловое перемещение
t - время поворота на угол ?

Поскольку на графике угловой скорости площадь прямоугольника соответствует угловому перемещению, имеем:

Постоянная угловая скорость - есть отношение углового перемещения (угла поворота) ко времени, затраченному на это перемещение.

Единица СИ угловой скорости:

Равномерно ускоренное движение по окружности без начальной угловой скорости

Тело начинает двигаться из состояния покоя, и его угловая скорость равномерно возрастает.

? - мгновенная угловая скорость тела в момент времени t
? - угловое ускорение, постоянное в течение времени t
? t , (? в радианах)
t - время

Поскольку на графике скорости угловое перемещение равно площади треугольника, имеем:

Поскольку вращение тела начинается из состояния покоя, изменение угловой скорости?? равно достигнутой в результате ускорения угловой скорости?. Поэтому формула принимает следующий вид:

Равномерно ускоренное движение по окружности с начальной угловой скоростью

Начальная скорость тела, равная ?0 в момент t = 0, изменяется равномерно на величину ?? . (Угловое ускорение при этом постоянно.)

?0 - начальная угловая скорость
? - конечная угловая скорость
? - угловое перемещение тела за время t в радианах
t - время
? - угловое ускорение постоянное в течение времени t

Поскольку на графике скорости угловое перемещение соответствует площади трапеции под кривой скорости, имеем:

Так как площадь трапеции равна сумме площадей образующих ее треугольника и прямоугольника, получаем:

Совместив формулы мы получим

После преобразования получаем выражение, не содержащее времени:

Неравномерно ускоренное движение тела по окружности

Движение тела по окружности будет неравномерно ускоренным, если изменение угловой скорости происходит не пропорционально времени, т. е. если угловое ускорение не остается постоянным. В этом случае и угловая скорость и угловое ускорение являются функциями времени.

Связь величин ? , ? и ? представлена на соответствующих графиках.

Мгновенная угловая скорость

Мгновенной угловой скоростью называется первая производная функции ? = ? (t ) по времени.

Обратите внимание:
1) чтобы вычислить мгновенную угловую скорость ? , необходимо знать зависимость углового перемещения от времени.
2) формула углового перемещения при равномерном движении тела по окружности и формула углового перемещения при равномерно ускоренном движении по окружности без начальной угловой скорости являются частными случаями формулы (2) соответственно для ? = 0 и ? = const.

Из формул следует:

Проинтегрировав обе части выражения, получим

Угловое перемещение есть интеграл по времени от угловой скорости.

Обратите внимание:
Для вычисления углового перемещения? необходимо знать зависимость угловой скорости от времени.

Средняя угловая скорость

Средняя угловая скорость для некоторого интервала времени

Среднее число оборотов определяется аналогично формуле:

Вращательное движение тела, формулы

Кроме того, эти величины связаны определенным образом с угловым перемещением ? , угловой скоростью ? и угловым ускорением ? .

Примечание:Формулы справедливы для постоянных, мгновенных и средних величин, во всех случаях движения тела по окружности.

Векторные величины, характеризующие вращательное движение тела

Определение:Если тело участвует одновременно в нескольких вращательных движениях, то результирующая угловая скорость определяется по правилу векторного (геометрического) сложения:

Величина результирующей угловой скорости определяется по аналогии с формулой (Сложение движений):

или, если оси вращения перпендикулярны друг другу

Примечание: Результирующее угловое ускорение определяется аналогичным образом. Графически результирующую можно найти как диагональ параллелограмма скоростей или ускорений.

Среди различных видов криволинейного движения особый интерес представляет равномерное движение тела по окружности . Это самый простой вид криволинейного движения. Вместе с тем любое сложное криволинейное движение тела на достаточно малом участке его траектории можно приближенно рассматривать как равномерное движение по окружности .

Такое движение совершают точки вращающихся колес, роторов турбин, искуственные спутники, вращающиеся по орбитам и т. д. При равномерном движении по окружности численное значение скорости остается постоянным. Однако направление скорости при таком движении непрерывно изменяется.

Скорость движения тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке. В этом можно убедиться, наблюдая за работой точила, имеющего форму диска: прижав к вращающемуся камню конец стального прута можно увидеть отрывающиеся от камня раскаленные частицы. Эти частицы летят с той скоростью, которой они обладали в момент отрыва от камня. Направление вылета искр всегда совпадает с касательной к окружности в той точке, где пруток касается камня. По касательной к окружности движутся также брызги от колес буксующего автомобиля.

Таким образом, мгновенная скорость тела в разных точках криволинейной траектории имеет различные направления, тогда как модуль скорости может быть или всюду одинаковым, или изменяться от точки к точке. Но даже если модуль скорости не изменяется, ее все равно нельзя считать постоянной. Ведь скорость - величина векторная, а для векторных величин модуль и направление одинаково важны. Поэтому криволинейное движение всегда ускоренное , даже если модуль скорости постоянен.

При криволинейном движении могут изменяться модуль скорости и ее направление. Криволинейное движение, при котором модуль скорости остается постоянным, называют равномерным криволинейным движением . Ускорение при таком движении связано только с изменением направления вектора скорости.

И модуль, и направление ускорения должны зависеть от формы кривлинейной траектории. Однако нет необходимости рассматривать каждую из ее бесчисленных форм. Представив каждый участок как отдельную окружность с некоторым радиусом, задача нахождения ускорения при криволинейном равномерном движении сведется к отысканию ускорения при равномерном движении тела по окружности.

Равномерное движение по окружности характеризуется периодом и частотой обращения.

Время, за которое тело делает один оборот, называют периодом обращения .

При равномерном движении по окружности период обращения определяется делением пройденного пути, т. е. длины окружности на скорость движения:

Величина, обратная периоду, называется частотой обращения , обозначается буквой ν . Число оборотов в единицу времени ν называют частотой обращения :

Из-за непрерывного изменения направления скорости, движущееся по окружности тело имеет ускорение, которое характеризует быстроту изменения ее направления, численное значение скорости в данном случае не меняется.

При равномерном движении тела по окружности ускорение в любой ее точке всегда направлено перпендикулярно скорости движения по радиусу окружности к ее центру и называется центростремительным ускорением .

Чтобы найти его значение, рассмотрим отношение изменения вектора скорости к интервалу времени , за который это изменение произошло. Поскольку угол очень мал, то мы имеем.

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Вы сейчас здесь: Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • На этом уроке мы рассмотрим криволинейное движение, а именно равномерное движение тела по окружности. Мы узнаем, что такое линейная скорость, центростремительное ускорение при движении тела по окружности. Также введем величины, которые характеризуют вращательное движение (период вращения, частота вращения, угловая скорость), и свяжем эти величины между собой.

    Под равномерным движением по окружности понимают, что тело за любой одинаковый промежуток времени поворачивается на одинаковый угол (см. Рис. 6).

    Рис. 6. Равномерное движение по окружности

    То есть модуль мгновенной скорости не меняется:

    Такую скорость называют линейной .

    Хотя модуль скорости не меняется, направление скорости изменяется непрерывно. Рассмотрим векторы скорости в точках A и B (см. Рис. 7). Они направлены в разные стороны, поэтому не равны. Если вычесть из скорости в точке B скорость в точке A , получаем вектор .

    Рис. 7. Векторы скорости

    Отношение изменения скорости () ко времени, за которое это изменение произошло (), является ускорением.

    Следовательно, любое криволинейное движение является ускоренным .

    Если рассмотреть треугольник скоростей, полученный на рисунке 7, то при очень близком расположении точек A и B друг к другу угол (α) между векторами скорости будет близок к нулю:

    Также известно, что этот треугольник равнобедренный, поэтому модули скоростей равны (равномерное движение):

    Следовательно, оба угла при основании этого треугольника неограниченно близки к :

    Это означает, что ускорение, которое направлено вдоль вектора , фактически перпендикулярно касательной. Известно, что линия в окружности, перпендикулярная касательной, является радиусом, поэтому ускорение направлено вдоль радиуса к центру окружности. Называется такое ускорение центростремительным.

    На рисунке 8 изображены рассмотренный ранее треугольник скоростей и равнобедренный треугольник (две стороны являются радиусами окружности). Эти треугольники являются подобными, так как у них равны углы, образованные взаимно перпендикулярными прямыми (радиус, как и вектор перпендикулярны к касательной).

    Рис. 8. Иллюстрация к выводу формулы центростремительного ускорения

    Отрезок AB является перемещением (). Мы рассматриваем равномерное движение по окружности, поэтому:

    Подставим полученное выражение для AB в формулу подобия треугольников:

    Понятий «линейная скорость», «ускорение», «координата» не достаточно для того, чтобы описать движение по кривой траектории. Поэтому необходимо ввести величины, характеризующие вращательное движение.

    1. Периодом вращения (T ) называется время одного полного оборота. Измеряется в системе СИ в секундах.

    Примеры периодов: Земля вращается вокруг своей оси за 24 часа (), а вокруг Солнца - за 1 год ().

    Формула для вычисления периода:

    где - полное время вращения; - число оборотов.

    2. Частота вращения (n ) - число оборотов, которое тело совершает в единицу времени. Измеряется в системе СИ в обратных секундах.

    Формула для нахождения частоты:

    где - полное время вращения; - число оборотов

    Частота и период - обратно пропорциональные величины:

    3. Угловой скоростью () называют отношение изменения угла, на который повернулось тело, ко времени, за которое этот поворот произошел. Измеряется в системе СИ в радианах, деленных на секунды.

    Формула для нахождения угловой скорости:

    где - изменение угла; - время, за которое произошел поворот на угол .



    Рекомендуем почитать

    Наверх